Modeling pairwise distances
I often use pairwise distance histograms to investigate the shape of point clouds. Pairwise distances (PWDs) are invariant to rigid transformations, insensitive to small perturbations and make no assumptions about the underlying shape of a point cloud. They are also unique to each shape class1, which means we can in theory fit PWD histograms to determine what structures are present within a data set. To do this, I have been slowly building up a battery of PWD models. The ones I have completed so far are described here. Noteably, I've left out filled spheres because Tu and Fischbach describe PWDs on spheres really well.
The general framework for building theoretical PWD distributions is as follows. Suppose we draw two points \(p, q\) from a distribution \(X\). What is the probability \(f(r)\) they are a distance \(r \in \mathbb{R}\) apart? Since each variable is treated as an independent sample from the same distribution, we are interested in the autocorrelation of \(X\) at a "delay" of \(r\). This is quite convenient as the form of autocorrelation integrals allows us to use the convolution theorem. Armed with a table of known Fourier transforms (FTs), we barely have to do any math at all! We also make the observation that PWDs are strictly positive, and so we fold the result from \(-\infty\) to \(\infty\) about \(0\).
Each section features the calculated PWDs at the top, and explanations for the results below.
Uniform
1D | \[f(r) = \begin{cases} \frac{2}{b-a}\left(1-\frac{1}{b-a}r\right) & 0 \le r \le b-a \\ 0 & \text{elsewhere} \end{cases}\] |
---|
where \(a,b \in \mathbb{R}\) are the lower and upper boundaries, respectively, over which the random uniform distribution is defined.
A 1D random uniform is defined by \(\frac{1}{b-a}\text{rect}\left(\frac{x-\frac{b-a}{2}}{b-a}\right)\) where \(\text{rect}\) is defined as in reference 2. We calculate the autocorrelation as \[ \begin{aligned} f(r) &= \frac{1}{(b-a)^2}\mathcal{F}^{-1}\left\{\left((b-a)\operatorname{sinc}((b-a)\xi)\exp\left(-2\pi i\xi\frac{b-a}{2}\right)(b-a)\operatorname{sinc}((a-b)\xi)\exp\left(2\pi i\xi\frac{b-a}{2}\right)\right)\right\} \\ &= \frac{1}{b-a}\mathcal{F}^{-1}\left\{(b-a)\operatorname{sinc}((b-a)\xi)^2\right\} \\ &= \frac{1}{b-a}\operatorname{tri}\left(\frac{r}{b-a}\right) \\ &= \begin{cases} \frac{1}{b-a}\left(1-\frac{1}{b-a}r\right) & a-b \le r \le b-a \\ 0 & \text{elsewhere} \end{cases}. \end{aligned} \] where \(\operatorname{sinc}\) and \(\operatorname{tri}\) are defined as in reference 2. We multiply this by \(2\) to fold about \(0\), as discussed above.
Gaussian
1D | \[f(r) = \frac{1}{\sqrt{\pi}\sigma_x}\exp\left(-\frac{r^2}{4\sigma_x^2}\right)\] |
---|---|
2D | \[f(r) = \frac{r}{2\sigma_x\sigma_y}\exp\left(-\frac{r^2(\sigma_x^2+\sigma_y^2)}{8\sigma_x^2\sigma_y^2}\right) I_0\left(\frac{r^2(\sigma_x^2-\sigma_y^2)}{8\sigma_x^2\sigma_y^2}\right)\] |
where \(\sigma_x, \sigma_y\) are uncertainties along the \(x\) and \(y\) axes, where \(x,y \in \mathbb{R}\) and \(I_0\) is the modified Bessel function of the first kind.
Explanation
Suppose \(X\sim\mathcal{N}(\sigma, \mu)\). We use the FT pair for a Gaussian from reference 2: \[f(x) = \exp\left(-a\left(x-\mu\right)^2\right) \stackrel{\mathcal{F}}{\leftrightarrow} \hat{f}(\xi)=\sqrt{\frac{\pi}{a}}\exp(-2\pi i\xi\mu)\exp\left(-\left(\frac{\pi^2\xi^2}{a}\right)\right)\] and consider the autocorrelation of a Gaussian \(g(x)=\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)\): \[ \begin{aligned} f(r) &= 2\mathcal{F}^{-1}\{g(r)\ast g^*(-r)\} \\ &= 2\frac{1}{2\pi\sigma^2}\mathcal{F}^{-1}\left\{\left(\sqrt{2\pi}\sigma\exp(-2\pi i\xi\mu)\exp(-2\sigma^2\pi^2\xi^2)\right)\left(\sqrt{2\pi}\sigma\exp(2\pi i\xi\mu)\exp(-2\sigma^2\pi^2\xi^2)\right)\right\} \\ &= 2\frac{1}{2\sqrt{\pi}\sigma}\mathcal{F}^{-1}\left\{2\sqrt{\pi}\sigma\exp(-4\sigma^2\pi^2\xi^2)\right\} \\ &= 2\frac{1}{\sqrt{\pi}\sigma}\exp\left(-\frac{r^2}{4\sigma^2}\right) \end{aligned} \] where the factor of \(2\) comes from folding the integral about \(0\), as discussed above.
Now let's cross-correlate the 1D PWD for a Gaussian along \(x\) and \(y\) \[ \begin{aligned} f(x,y) &= \mathcal{F}^{-1}\left\{\exp\left(-4\sigma_x^2\pi^2\xi^2\right)\exp\left(-4\sigma_y^2\pi^2\zeta^2\right)\right\} \\ &= \frac{1}{4\pi\sigma_x\sigma_y}\exp\left(-\frac{1}{4}\left(\frac{x^2}{\sigma_x^2}+\frac{y^2}{\sigma_y^2}\right)\right). \end{aligned} \] and re-express it as a one-dimensional function of \(r\). To do this, we convert the equation to polar coordinates and integrate over the angle \(\theta\): \[ \begin{aligned} F(r) &= \int_{-\infty}^\infty\int_{-\infty}^\infty\frac{1}{4\pi\sigma_x\sigma_y}\exp\left(-\frac{1}{4}\left(\frac{x^2}{\sigma_x^2}+\frac{y^2}{\sigma_y^2}\right)\right) dxdy\\ &= \frac{1}{4\pi\sigma_x\sigma_y}\int_0^{2\pi}\int_0^r\exp\left(-\frac{1}{4}\left(\frac{\rho^2\cos\theta^2}{\sigma_x^2}+\frac{\rho^2\sin\theta^2}{\sigma_y^2}\right)\right)\rho d\rho d\theta \\ &= \frac{1}{4\pi\sigma_x\sigma_y}\int_0^{2\pi}\int_0^r\exp\left(-\frac{\rho^2}{4\sigma_x^2\sigma_y^2}\left(\sigma_y^2\cos\theta^2+\sigma_x^2\sin\theta^2\right)\right)\rho d\rho d\theta \\ &= \frac{1}{4\pi\sigma_x\sigma_y}\int_0^{2\pi}\int_0^r\exp\left(-\frac{\rho^2}{4\sigma_x^2\sigma_y^2}\left(\sigma_y^2\cos\theta^2+\sigma_x^2(1-\cos\theta^2)\right)\right)\rho d\rho d\theta \\ &= \frac{1}{4\pi\sigma_x\sigma_y}\int_0^{2\pi}\int_0^r\exp\left(-\frac{\rho^2}{4\sigma_x^2\sigma_y^2}\left(\sigma_y^2\cos\theta^2+\sigma_x^2\left(1-\frac{1}{2}\cos(2\theta) - \frac{1}{2}\right)\right)\right)\rho d\rho d\theta \\ &= \frac{1}{4\pi\sigma_x\sigma_y}\int_0^{2\pi}\int_0^r\exp\left(-\frac{\rho^2}{4\sigma_x^2\sigma_y^2}\left(\sigma_y^2\cos\theta^2+\frac{\sigma_x^2}{2}-\frac{\sigma_x^2}{2}\cos(2\theta)\right)\right)\rho d\rho d\theta \\ &= \frac{1}{4\pi\sigma_x\sigma_y}\int_0^{2\pi}\int_0^r\exp\left(-\frac{\rho^2}{4\sigma_x^2\sigma_y^2}\left(\sigma_y^2\left(\frac{1}{2}\cos(2\theta)+\frac{1}{2}\right)+\frac{\sigma_x^2}{2}-\frac{\sigma_x^2}{2}\cos(2\theta)\right)\right)\rho d\rho d\theta \\ &= \frac{1}{4\pi\sigma_x\sigma_y}\int_0^{2\pi}\int_0^r\exp\left(-\frac{\rho^2}{4\sigma_x^2\sigma_y^2}\left(\frac{\sigma_y^2}{2}\cos(2\theta)+\frac{\sigma_y^2}{2}+\frac{\sigma_x^2}{2}-\frac{\sigma_x^2}{2}\cos(2\theta)\right)\right)\rho d\rho d\theta \\ &= \frac{1}{4\pi\sigma_x\sigma_y}\int_0^{2\pi}\int_0^r\exp\left(-\frac{\rho^2}{4\sigma_x^2\sigma_y^2}\left(\frac{\sigma_y^2}{2}+\frac{\sigma_x^2}{2}\right)\right)\exp\left(-\frac{\rho^2}{4\sigma_x^2\sigma_y^2}\left(\frac{\sigma_y^2}{2}\cos(2\theta)-\frac{\sigma_x^2}{2}\cos(2\theta)\right)\right)\rho d\rho d\theta \\ &= \frac{1}{4\pi\sigma_x\sigma_y}\int_0^{2\pi}\int_0^r\exp\left(-\frac{\rho^2(\sigma_x^2+\sigma_y^2)}{8\sigma_x^2\sigma_y^2}\right)\exp\left(-\frac{\rho^2(\sigma_x^2-\sigma_y^2)\cos(2\theta)}{8\sigma_x^2\sigma_y^2}\right)\rho d\rho d\theta \\ &= \frac{1}{2\pi\sigma_x\sigma_y}\int_0^r\exp\left(-\frac{\rho^2(\sigma_x^2+\sigma_y^2)}{8\sigma_x^2\sigma_y^2}\right)\int_0^{\pi}\exp\left(-\frac{\rho^2(\sigma_x^2-\sigma_y^2)\cos(\theta)}{8\sigma_x^2\sigma_y^2}\right)\rho d\rho d\theta \\ &= \frac{1}{2\sigma_x\sigma_y}\int_0^r\exp\left(-\frac{\rho^2(\sigma_x^2+\sigma_y^2)}{8\sigma_x^2\sigma_y^2}\right) I_0\left(\frac{\rho^2(\sigma_x^2-\sigma_y^2)}{8\sigma_x^2\sigma_y^2}\right)\rho d\rho \end{aligned} \] where we have used the integral definition of the modified Bessel function of the first kind \[ I_0(z) = \frac{1}{\pi}\int_0^\pi \exp(-z\cos\theta). \] Since we are interested in this function at instantaneous \(\rho=r\), we now use the Leibniz rule to calculate \[ \begin{aligned} f(r) &= \frac{d}{dr}\left[ \frac{1}{2\sigma_x\sigma_y}\int_0^r\exp\left(-\frac{\rho^2(\sigma_x^2+\sigma_y^2)}{8\sigma_x^2\sigma_y^2}\right) I_0\left(\frac{\rho^2(\sigma_x^2-\sigma_y^2)}{8\sigma_x^2\sigma_y^2}\right)\rho d\rho\right] \\ &= \frac{r}{2\sigma_x\sigma_y}\exp\left(-\frac{r^2(\sigma_x^2+\sigma_y^2)}{8\sigma_x^2\sigma_y^2}\right) I_0\left(\frac{r^2(\sigma_x^2-\sigma_y^2)}{8\sigma_x^2\sigma_y^2}\right). \end{aligned} \] This is the PWD for an elliptic 2D Gaussian.
Shells
2D | \[f(r) = \frac{1}{\pi R\sqrt{1-\frac{r^2}{4R^2}}}\] |
---|---|
3D | \[f(r) = \frac{r}{2R^2}\] |
where \(R \in \mathbb{R}\) is the radius of the shell.
Explanation
The framework for calculating pairwise distances on shells is a bit different from the rest of the PWDs. Consider two points \(q,p \in \mathbb{R}^2\) on half a ring of radius \(R\), separated by a distance \(s\in\mathbb{R}\), as shown below.
The angle between these points is given by \[\alpha = 2\arcsin\left(\frac{s}{2R}\right)\] where \(s = |q-p|\). Since \(q\) and \(p\) are both at a radius \(R\), we only need to integrate over the unique angles \(\alpha\) to convert from a function of \(s\) to a cumulative pairwise distribution: \[ \begin{aligned} F(r) &= \frac{\int_0^r \frac{ds}{R\sqrt{1-\frac{s^2}{4R^2}}}}{\int_0^{2R} \frac{ds}{R\sqrt{1-\frac{s^2}{4R^2}}}} \\ &= \frac{2\arcsin\left(\frac{r}{2R}\right)}{\pi} \end{aligned} \] where we have made the observation \[d\alpha = \frac{ds}{R\sqrt{1-\frac{s^2}{4R^2}}}\] We can now take the derivative of \(F(r)\) to calculate \[ \begin{aligned} f(r) &= \frac{d}{dr}\left[\frac{2\arcsin\left(\frac{r}{2R}\right)}{\pi}\right] \\ &= \frac{1}{\pi R\sqrt{1-\frac{r^2}{4R^2}}} \end{aligned} \]
For the 3D case, we create an analagous construction over \(\alpha\) and their orthogonal angles \(\beta\).