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1 Introduction

What follows is a brief introduction to optics using an approximation known as geometric optics. In this
approximation, light travels in straight lines known as rays. This is useful for designing telescopes and
microscopes, and this is the end goal we have in mind. Please note that this is not comprehensive, and
optical elements such as apertures and stops, mirrors, prisms, wave plates, polarizers, the list goes on, are
key to making good optical devices. This primer is a jumping off point to dive into the ocean of optics.

Much of this was built by following Optics by Eugene Hecht and some details were extracted from
Principles of Optics by Born and Wolf. I’ve attempted to sprinkle in a few extra details I remember hearing
from Dr. Joerg Bewersdorf, but any mistakes in this document are due to failures in my memory.

2 Lenses and refraction

A lens is a shaped piece of (usually) glass, plastic or metal that can disperse or focus light via refraction.
Refraction is the change in direction of a (light) wave that passes from one medium (e.g. air) to another
(e.g. glass). In other words: lenses bend light.

f −f

Figure 1: (a) A biconvex lens focusing light at focal length f . (b) A biconcave lens dispersing light coming
from focal length −f .

When rays of light travel together in a straight line, such that all the rays are parallel, we say this light
is collimated. Fig. 1a shows a biconvex lens bending collimated light toward a focal point f . The distance
from the horizontal center of the lens to f is called the focal length, and is the most important characteristic
of any lens.

Notice that we have drawn a dotted line through the vertical center of the lens and extending to “infinity”
on either side of the horizontal center of the lens. This is called the optical axis. It is an imaginary line
tracing the central optical ray of any system (e.g. a microscope system). The intersection of vertical and
horizontal center of the lens is called the optical center of the lens.

For a biconcave lens, as shown in Fig. 1b, the focal length is the distance at which diverging rays would
converge if they were traced backwards, as shown by the dotted lines.

Note that biconvex and biconcave are just two of many lens types. Lenses are classified by the curvature
of their faces. If one side of a lens is convex and the other is flat, this is called planoconvex. If one side is
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concave and the other is flat, this is planoconcave. If one side is concave and the other is convex, this is
called a meniscus lens. Think about how the ray diagrams would look for each of these cases.

Problem 1. Fig. 2 shows an eye with myopia (nearsightedness). The rays converge slightly in front of
the retina (the retina is at the back of the eye), blurring objects that are far away. What kind of lens can
we place in front of the eye to make the rays focus on the retina? Why does this work?

Figure 2: An eye with myopia.

2.1 Material

As mentioned above, refraction is caused by light moving from one material to another. Snell’s law

n0 sin θ0 = n1 sin θ1

describes light’s change in direction as it passes between materials of different refractive indices. θ0 and θ1
are as shown in Fig. 3. n0 and n1 are the refractive indices of materials 0 and 1 (clear and gray, respectively,
in Fig. 3). The refractive index, ni, of a material i is a measure of the relative speed vi at which light travels
through material i as compared to the speed at which light travels in a vacuum, c ≈ 3 × 108 m/s. That is,

ni =
c

vi
.

θ0

θ1

n0 n1

Figure 3: A ray of light passing from material 0 (e.g. air) to material 1 (e.g. glass) changes direction
according to the angle of incidence θ0 and the relative change in refractive indices n0 to n1.

Problem 2. Suppose we are choosing between lenses made out of two different types of glass. One is
made of N-BK7, n = 1.4990, and the other is fused quartz, n = 1.4567. Assuming θ0 and n0 are constant,
which lens will bend the light more (have a smaller θ1)?

Problem 3. Suppose we are gluing two pieces of glass (n = 1.51) together to make a thicker piece
of glass and we don’t want the light to bend when it moves from one piece of glass to the other. Why is
Canada Balsam a good choice of glue? What would the refractive index be for the best kind of glue?
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2.2 Shape

In addition to refractive index, the shape of the lens helps determine lens focal length. Fig. 4 shows a
biconvex lens carved from intersection of two spheres. This is closely related to the lens manufacturing
process, where a diamond tool moving in a spherical arc carves out the shape of the lens from a glass blank,
which is usually a disc or square piece of glass.

R0

R1

w

d

Figure 4: A biconvex lens of thickness w represented as the intersection of spheres of radius R0 and R1

separated by a distance d.
.

Putting this all together, the lensmaker’s equation

1

f
= (n− 1)

[
1

R0
− 1

R1
+

(n− 1)w

nR0R1

]
describes how the focal length of a lens is determined based on shape and refractive index of the lens n,
assuming the lens is surrounded by nair ≈ 1.0003. The equation is expressed in this way since 1

f is often
referred to as the lens’s power, that is the degree to which it can focus or diverge light. When w is small as
compared to R0 and R1, we can use the thin lens approximation of the lensmaker’s equation

1

f
≈ (n− 1)

[
1

R0
− 1

R1

]
.

Problem 4. Suppose we have a biconvex N-BK7 lens with R0 = 75 mm, R1 = 200 mm and f = 240
mm. What is the separation distance of the two spheres? Given the calculated lens thickness, what is the
difference between the provided value for f and f in the thin-lens approximation? Does this make sense?
Why or why not?

Problem 5. Draw the equivalent of Fig. 4 for a biconcave lens.

3 Rules for drawing ray diagrams

Rules 1-3 show how to draw rays passing through convex (left) and concave (right) lenses.
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−f f −f f

Rule 1: A ray traveling parallel to the optical axis will pass through the lens focal point.

−f f −f f

Rule 2: A ray traveling through the lens focal point will become parallel to the optic axis.

−f f −f f

Rule 3: A ray passing through the lens optical center will continue in a straight line.

Problem 6. Below is a diagram for a simple microscope (à la Antonie van Leeuwenhoek) containing a
single lens of focal length f0. Draw a ray emitting parallel to the optical axis and heading right from the top
of the arrow. Draw another ray heading toward −f0 from the top of the arrow. Draw the rays until they
intersect.

−f0 f0

Problem 7. Draw the rays emitting parallel to the optical axis and toward −f0 from the top of the
arrow in the diagram below. Where is the image formed?
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−f0 f0

Problem 8. An object that is too close to the lens. Draw the rays emitting parallel to the
optical axis and toward the optical center of the lens from the top of the arrow in the diagram below. Where
is the image formed? Hint: how did we figure out the focal length of the biconcave lens in Lenses and
refraction?

−f0 f0

4 Magnification

The solution to problem 6 is shown in Fig. 5.

ho

−f0 f0 hi

do
di

Figure 5: A labelled ray diagram for a simple microscope.

Here we have also drawn an arrow from the optical axis to the intersection of the rays. This arrow is the
height hi of the image of the object. The height of the object is given by ho. The distance from the lens to
the object is given by do and the distance from the lens to the image is given by di. The magnification of
this lens is given by

M =
hi
ho

=
−di
do

=
f

f − do
. (1)

Problem 9. Suppose we have the following single-lens system.

3 mm

-15 mm 15 mm

20 mm
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What is height of the image? What is the distance from the lens to the image?

Problem 10. Suppose I grab a f = 150 mm focal length lens from an optics drawer in a lab. I find a
35 mm long paperclip at my desk. At what distance do from the lens will my paperclip be magnified 2×?
What is the distance from the lens to the image?

5 Compound microscopes

It is difficult to achieve high magnification with a simple microscope such as in Problem 6 without distorting
the image. As such, we most often build compound microscopes: microscopes containing two or more lenses.

5.1 Two lens systems

Below is a diagram of an optical system formed by two thin centered lenses.

−f0 f0 −f1 f1

l

For this system,
1

f
=

1

f0
+

1

f1
− l

f0f1
. (2)

The magnification of this system is given by

M = M0M1

where M0 is the magnification of the first lens and M1 is the magnification of the second lens, each calculated
as in Equation 1.

Problem 11. Recall that we fixed myopia in Problem 1. Now let’s show how we fixed it in detail.
Suppose we place a biconvex lens in front of an eye, as in the diagram below. What is the focal length of
the biconcave lens? Note that glass prescription strength is equivalent to lens power. What is strength of
this lens prescription? Is a person using this lens mildly or severely myopic?
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11 mm 14 mm 6 mm

Problem 12. Draw the rays emitting parallel to the optical axis and toward −f0 from the top of the
arrow in the diagram below. Where is the image formed?

−f0 f0 −f1 f1

5.1.1 4f systems

If we place two lenses with focal lengths f0 and f1 exactly f0 + f1 apart, we create a telescope called a 4f
system (to understand why we call this 4f , count the number of focal lengths: −f0 to the first lens is 1, the
lens to f0/− f1 is 2, f0/− f1 to the second lens is 3, and the second lens to f1 is 4), shown in Fig. 6.

−f0 f0/− f1 f1

Figure 6: A 4f system.

4f systems are fairly easy to work with, and as a result we like to use them when building microscopes.
The problems below reveal some useful properties of 4f systems.

Problem 13. Show that the magnification of an object in focus in a 4f system is M = −f1
f0

.
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Problem 14. Draw the ray emitting parallel to the optical axis from the top of arrow in the diagram
below. Where is the image formed? What are the focal lengths of this system?

−f0 f0/− f1 f1

5.2 Multi-lens systems

This relation in Equation 2 is quite convenient: it means we can represent any two lenses with focal lengths
f0 and f1 as a single lens of focal length f , as long as they are not in a 4f system. A 4f system maps an
image at one focal length as an image at a different focal length. These observations allow us to recursively
decompose a system of N lenses into sets of two lens.

Problem 15. Draw the rays emitting parallel to the optical axis and toward −f0 from the top of the
arrow in the diagram below. Where are the image planes? What is the focal length of this system? Hint:
Once you’ve found the first image plane, start new rays from that image.

−f0 f0 −f1 f1−f2 f2

Problem 16. Draw the ray emitting parallel to the optical axis from the top of arrow in the diagram
below. Where are the image planes? What are the focal lengths of this system? What is the magnification
of this system?

−f0 f0/− f1 f1/− f2 f2/− f3 f3

5.3 Imaging onto a camera

We are interested in recording and analyzing the images created by our multi-lens systems. As such, we like
to put cameras in image planes of interest (usually the final image plane).

Cameras record light in two-dimensional bins called pixels, converting a continuous image into a discrete
set of pixels, as shown in Fig. 7. Here we are undersampling, as evidenced by the the coarseness of Fig. 7,
right.
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Figure 7: A camera chip forming a discrete image of a tree. Left: a tree projected onto a camera chip. Right:
the resulting discrete image, black if a sufficient piece of tree is present within the pixel and white otherwise.

Ideally we will take an image with the best resolution possible. Our light has a resolution limit set by
the diffraction limit of light, and this means our microscope point spread function is around 250 nm in
diameter. According to Nyquist sampling, we need to make sure our camera samples at twice this spatial
frequency–that is, at least 2 camera pixels for every 250 nm.

Problem 17. Suppose we are attempting to image an object onto a camera as below. The camera is
2048×2048 pixels and the pixel size is 6.45 µm × 6.45 µm. Suppose I want at least 3 pixels per point spread
function. What magnification will we need to sample a 250 nm point spread function at this frequency?
What is a set of focal lengths f0, f1 that will produce this magnification? Will the image of our object fit
on the camera chip?

20µm

−f0 f0/− f1 f1

Camera

13.2096 mm
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